

1

The Electronic Brand of

I n t e g r a t i o n M a n u a l

T r a c e & F o l l o w
E n e r g y M o n i t o r i n g P l a t f o r m

IDT S.r.l.s.b

Headquarters: Corso Orbassano 402/6 - 10137 - Torino (TO)

Registered office: Via Sebastiano Valfrè 16 - 10121 - Turin (TO)

Tel. +39 011 0922786
E-mail administration: monica.giacomelli@dtsolution.com

E-mail technical department:

alberto.mazzucchelli@idtsolution.com

E-mail business office: margherita.ferragatta@idtsolution.com

Site: https://idtsolution.com/

Rev. 2 - 18-06-2024

mailto:monica.giacomelli@dtsolution.com
mailto:alberto.mazzucchelli@idtsolution.com
mailto:margherita.ferragatta@idtsolution.com

 The Electronic Brand of Trace&Follow-Integration Manual-EN

2

Summary

TECHNICAL FEATURES... 3

COMPONENT OVERVIEW .. 3

HARDWARE COMPONENTS ... 3
Boards .. 3

ASSEMBLY ... 4

SUPPLY.. 4

FUNCTIONALITY OVERVIEW .. 5

SETUP ... 6

Configuration files .. 6

OPERATIONAL STEPS. ..18

Preliminary Checks.. 18

Initialization .. 18
Ethernet.. 18
Wi-Fi ... 18
4G ... 18

MQTT INTERFACE ..19

Data sent from the board ... 19
Non-periodic data: ... 19
Non-periodic state data: .. 20
Periodic data: ... 21
Payload on first connection ... 22
Network data payload.. 23
Periodic data payload .. 23
Payload non-periodic state data .. 25
Non-periodic configuration data payload ... 25

Data sent from the server... 25
Server first .. 25
Board first ... 27

OTA Updates ... 29

I/O MANAGEMENT. ..33

Input configuration ... 33

Output configuration .. 34

MODBUS TCP SERVER ..34

Input registers ... 35

Holding registers... 37

LoRaWAN INTERFACE ..40

REVIEWS ..41

 The Electronic Brand of Trace&Follow-Integration Manual-EN

3

TECHNICAL FEATURES

Dimensions (mm) 150 x 95 x 40

Weight (g) 300

Degree of protection IP20

Temperature of use 0..+50°

Humidity of use Maximum 95%, no condensation

Power supply 24 VDC +/- 10% 1 A max.

Communication protocol Modbus TCP, MQTT, RS485(internal expansions)

Connection Ethernet, Wi-Fi 2.4g, 4G, LoRaWAN

COMPONENT OVERVIEW

HARDWARE COMPONENTS

Boards

1. Power terminal

2. Digital output terminal

3. Digital input terminal

4. Current sensor connection terminals

5. Connection port for "Voltage sampling" expansion

6. RS485 terminal

7. Ethernet connector

8. Led Run

9. Status Led

10. Main antenna connector

11. Auxiliary antenna connector

 The Electronic Brand of Trace&Follow-Integration Manual-EN

4

12. Reset button

13. Wi-Fi antenna connector

14. Ground connection

ASSEMBLY

The device is intended to be installed in either a 72 mm DIN enclosure or a flanged enclosure of the same size as the
board. No other installation options are available. Typically, the module is delivered pre-installed in a DIN enclosure or
its flanged container.

SUPPLY

The device should be powered at 24 VDC +/- 10%. The maximum consumption is 1A, which depends on the type of

expansions and cloud connection used. The device is protected against reverse polarity.

 The Electronic Brand of Trace&Follow-Integration Manual-EN

5

FUNCTIONALITY OVERVIEW

Trace&Follow is a device that monitors the energy consumption of industrial machinery and sends the acquired data

to a cloud platform. It was designed and developed entirely by RedSmart, a business unit of IDT.

The board’s primary function is to measure the power consumption of industrial machinery. It can acquire digital

signals and drive digital outputs. The board sends the acquired data to a broker that can be set using the MQTT

protocol.

In addition to these basics, the board implements other features:

• Access-point: The board can create a Wi-Fi access point and expose a web page to a configurable IP address.

• Modbus TCP server: The Trace&Follow board serves as a Modbus server, enabling external devices to read

and write data within the board. It operates as a slave within the network and can be accessed by other

devices.

• Expansion modules: The Trace&Follow board can interface with external modules through an RS485 port.

• Multiple network interfaces: The MQTT broker can be accessed through various network interfaces,

including Wi-Fi 2.4G, Ethernet, or 4G. Two MQTT interfaces can be configured. In the case of a LoRaWAN

connection, the card does not connect directly to an MQTT broker, but sends a radio packet to a LoRa

gateway, which decodes it. The connection to the MQTT broker is handled by the gateway.

• CutOff: A relay can be connected to one of the digital outputs of the board to interrupt the power supply of

the connected machine and turn it off. A power threshold can be set to determine when the machine is in

the “idle” state, and a maximum time limit can be set for the machine to remain in this state. If this time limit

is exceeded, the Trace&Follow board will switch the relay and shut down the machine.

Note: If the power supply of the board is the same as that of the machine and no external UPS is provided,

the board will also shut down because it does not have a built-in UPS.

The board captures data that is divided into two categories:
• Periodic data: Data is sampled at regular intervals, with the time being configurable, and is used to create a

data packet that is inserted into the transmission buffer. The data is then published in JSON-formatted
messages on the MQTT interface, along with the corresponding timestamp of packet creation.

• Non-periodic data: The data is transmitted immediately upon an event trigger, such as a change in input

state. Unlike periodic data, it is not accompanied by a timestamp.

 The Electronic Brand of Trace&Follow-Integration Manual-EN

6

SETUP

Connect the power supply, necessary expansions, antennas, and Ethernet cable if required.

Configuration files

Device configuration is accomplished by uploading a configuration file directly to the Trace&Follow board through its
web interface.

The file must be named “TF_config.json” and be in JSON format, containing the required fields:

o "T&F config file:

• Description: object containing configuration parameters

• Type: JSON object

• Fields:
1. "CREDENTIALS:

• Description: object containing configuration parameters for accessing functions that require

credentials in the configuration web page
• Type: JSON object

• Fields:

(a) "user":
▪ Description: username

▪ Type: String
(b) "password"

▪ Description: password
▪ Type: String

2. "AP."

• Description: object containing the configuration parameters of the Wi-Fi access-point generated by
the board.

• Type: JSON object

• Fields:

(a) "name":
▪ Description: name of the Wi-Fi network generated by the board
▪ Type: String

(b) "password"

▪ Description: Wi-Fi network password (8 to 63 characters)
▪ Type: String

(c) "ip":
▪ Description: IP address of the web page of the board
▪ Type: String

(d) "mask"
▪ Description: network mask
▪ Type: String

3. "WIFI:

• Description: object containing the configuration parameters of the Wi-Fi connection

• Type: JSON object

• Fields:
(a) "use_dhcp":

▪ Description: DHCP enabled
▪ Type: Bool

(b) "ip":
▪ Description: fixed IP address of the board (used if use_dhcp = 0)

▪ Type: String (ex: "192.168.1.100")

 The Electronic Brand of Trace&Follow-Integration Manual-EN

7

(c) "mask"

▪ Description: network mask (used if use_dhcp = 0)
▪ Type: String

(d) "gateway"

▪ Description: network gateway (used if use_dhcp = 0)
▪ Type: String

(e) "dns":
▪ Description: network dns (used if use_dhcp = 0)
▪ Type: String

(f) "ssid":
▪ Description: name of the network to connect to

▪ Type: String
(g) "password"

▪ Description: password of the network to connect to
▪ Type: String

(h) "channel"

▪ Description: Wi-Fi network channel
▪ Type: Integer [0..14, 0=auto]

(i) "bssid":
▪ Description: bssid of the Wi-Fi network

▪ Type: String

4. "RTC”:

• Description: object containing the configuration parameters of the RTC

• Type: JSON object

• Fields:

(a) "time_from_network":
▪ Description: timestamp initialization configuration
▪ Type: Bool

(b) "timezone"
▪ Description: timezone to be used for the board

▪ Type: Integer [-12..+12]
(c) "timestamp_rel":

▪ Description: forces the publication of messages with relative timestamps related to time at
which the board is turned on instead of absolute timestamps

▪ Type: Bool

5. "ETH"
• Description: object containing the configuration parameters of the Ethernet connection

• Type: JSON object

• Fields:
(a) "use_dhcp":

▪ Description: DHCP enabled
▪ Type: Bool

(b) "ip":
▪ Description: fixed IP address of the board (used if use_dhcp = 0)
▪ Type: String (ex: "192.168.1.100")

(c) "mask"
▪ Description: network mask (used if use_dhcp = 0)
▪ Type: String

(d) "gateway"
▪ Description: network gateway (used if use_dhcp = 0)

▪ Type: String
(e) "dns":

▪ Description: network dns (used if use_dhcp = 0)
▪ Type: String

 The Electronic Brand of Trace&Follow-Integration Manual-EN

8

6. "MAIN_MQTT"
• Description: object containing the configuration parameters of the connection to the MQTT broker

(used in case of Wi-Fi, Ethernet and 4G connection)

• Type: JSON object

• Fields:

(a) "server"

▪ Description: MQTT server to connect to.
▪ Type: String

(b) "port"
▪ Description: server port to connect to
▪ Type: integer [1..65535]

(c) "attribute":
▪ Description: MQTT topic on which to publish attributes.
▪ Type: String (ex: "topic/attribute")

(d) "telemetry"

▪ Description: MQTT topic on which to publish telemetry data.
▪ Type: String

(e) "rpc":

▪ Description: MQTT topic to post to from which the board receives rpc commands
▪ Type: String

(f) "username":
▪ Description: username MQTT server authentication
▪ Type: String

(g) "password"
▪ Description: MQTT server authentication password
▪ Type: String

(h) "connection_int":

▪ Description: time interval (msec) between reconnection attempts in case of connection
error

▪ Type: Integer [0..65535]

7. "SECONDARY_MQTT"

• Description: object containing the configuration parameters of the connection to the secondary

MQTT broker (used in case of Wi-Fi, Ethernet and 4G connection)
• Type: JSON object

• Fields:
(a) “active”:

▪ Description: enable secondary MQTT.

▪ Type: Bool
(b) "server"

▪ Description: MQTT server to connect to.
▪ Type: String

(c) "port"

▪ Description: server port to connect to
▪ Type: integer [1..65535]

(d) "attribute":
▪ Description: MQTT topic on which to publish attributes.
▪ Type: String (ex: "topic/attribute")

(e) "telemetry"
▪ Description: MQTT topic on which to publish telemetry data.
▪ Type: String

(f) "rpc":
▪ Description: MQTT topic to post to from which the board receives rpc commands

▪ Type: String
(g) "username":

▪ Description: username MQTT server authentication
▪ Type: String

 The Electronic Brand of Trace&Follow-Integration Manual-EN

9

(h) "password"
▪ Description: MQTT server authentication password
▪ Type: String

(i) "connection_int":
▪ Description: time interval (msec) between reconnection attempts in case of connection

error
▪ Type: Integer [0..65535]

8. "LORA":

• Description: object containing LoRa connection configuration parameters. Leave fixed as in the

example

• Type: JSON object

• Fields:
(a) "app_eui":

▪ Description: eui LoRa app

▪ Type: String
(b) "app_key":

▪ Description: app key LoRa

▪ Type: String
(c) }, "downlink_time":

▪ Description: reception waiting time after a sending
▪ Type: Integer [0..10000]

(d) "max_send_size":

▪ Description: max number of bytes per message. To be set fixed at 65
▪ Type: integer [65]

(e) "power"
▪ Description: transmission power index.

▪ Type: Integer [0..5]
(f) "min_transmission_time":

▪ Description: minimum time between two consecutive transmissions in milliseconds.
Min:15000

▪ Type: Integer [15000..60000]

9. "HTTP" (not used):

• Description: object containing HTTP connection configuration parameters

• Type: JSON object

• Fields:

(a) No fields are present, reserved for future implementation

10. "SD" (not used):

• Description: object containing configuration parameters of SD card usage

• Type: JSON object

• Fields:
(a) No fields are present, reserved for future implementation

11. "CONNECTION:

• Description: object containing connection type configuration parameters

• Type: JSON object

• Fields:
(a) "type":

▪ Description: connection type (1-> Ethernet, 2-> WiFi, 3-> LoRa, 4-> 4G)
▪ Type: integer

(b) "machine" (not used):
▪ Description: reserved (to be left fixed at 1)

▪ Type: integer

 The Electronic Brand of Trace&Follow-Integration Manual-EN

10

12. "PACKET":
• Description: object containing package creation configuration parameters

• Type: JSON object

• Fields:
(a) "packet_int":

▪ Description: packaging time in milliseconds

▪ Type: integer [1000..4294967295]
(b) "buffer_size":

▪ Description: maximum number of packets that can be saved in the transmission buffer
▪ Type: integer

13. "POWER."
• Description: object containing energy measurement configuration parameters

• Type: JSON object

• Fields:

(a) "sampling_int":
▪ Description: time between energy meter sampling in milliseconds

▪ Type: integer
(b) "voltage_sensor":

▪ Description: use of voltage sampling. 0-> no, 1-> yes
▪ Type: Bool

(c) "line_freq":
▪ Description: grid frequency (value used if voltage_sensor = 0, otherwise detected by the

board)

▪ Type: integer
(d) "pga_gain":

▪ Description: Value to be set according to the CT used. See the relevant table1.
▪ Type: integer

(e) "voltage_gain":
▪ Description: input gain of PGA on voltages
▪ Type: integer

(f) "gain_ct1":

▪ Description: CT1 calibration. Value to be set according to the CT used. See the relevant
table1.

▪ Type: integer
(g) "gain_ct2":

▪ Description: CT2 calibration. Value to be set according to the CT used. See the relevant

table1.
▪ Type: integer

(h) "gain_ct3":
▪ Description: CT3 calibration. Value to be set according to the CT used. See the relevant

table1.

▪ Type: integer
(i) "pf":

▪ Description: power factor (value used if voltage_sensor = 0, otherwise detected by the
board)

▪ Type: Float

(j) "voltage"
▪ Description: line voltage (value used if voltage_sensor = 0, otherwise detected by the

board)
▪ Type: integer

(k) "connection_type":

▪ Description: type of connection: 0 -> three-phase with Neutral, 1 -> three-phase without
Neutral

▪ Type: integer

 The Electronic Brand of Trace&Follow-Integration Manual-EN

11

14. "INPUTS:
• Description: object containing configuration parameters of physical and virtual inputs

• Type: JSON object

• Fields:
(a) "number_phy":

▪ Description: number of physical inputs. To be set to 4

▪ Type: integer
(b) "inputs"

▪ Description: array of physical input description. Must contain number_phy elements
▪ Type: Array JSON
▪ Fields:

a. "num":
• Description: input number, must contain a sequence number for each array

element starting from number 1

• Type: integer
b. "enabled"

• Description: enabling input

• Type: Bool

c. "mod":

• Description: input mode. (1-> normal, 2-> counter, 3-> function, 4-> blinking)

• Type: integer

d. "polarity"
• Description: input polarity (0-> normal, 1-> inverse)

• Type: Bool

e. " filter_time":

• Description: input filter, no pulse below this threshold is considered in mode 1

• Type: integer [milliseconds]

f. “reset_counter”:

• Description: Enabling reset of the counter associated with the input after sending

when it is configured in "counter" mode(2)
• Type: Bool

g. “add_to_packet”:

• Description: Enables the insertion of the input value, if configured in mode 1, 3 or

4, within the transmitted periodic data packet. When enabled, asynchronous
messages related to status changes of this input are no longer sent.

• Type: Bool

(c) "number_virt":
▪ Description: number of virtual inputs. To be set according to how many virtual inputs you

want to set.
▪ Type: integer

(d) "virtual_inputs":

▪ Description: virtual input description array. Must contain number_virt elements
▪ Type: Array JSON

▪ Fields:
a. "num":

• Description: input number, must contain a sequence number for each array

element starting from number 1

• Type: integer
b. "enabled":

• Description: enabling input

• Type: Bool
c. "mod":

• Description: input mode. (1-> normal, 2-> counter, 3-> function, 4-> blinking)

• Type: integer

 The Electronic Brand of Trace&Follow-Integration Manual-EN

12

d. "polarity":
• Description: input polarity (0-> normal, 1-> inverse)

• Type: Bool
e. "filter_time":

• Description: input filter, no pulse below this threshold is considered in mode 1

• Type: integer [milliseconds]
f. “reset_counter”:

• Description: Enabling reset of the counter associated with the input after sending

when it is configured in "counter" mode(2)

• Type: Bool

g. “add_to_packet”:
• Description: Enables the insertion of the input value, if configured in mode 1, 3 or

4, within the transmitted periodic data packet. When enabled, asynchronous

messages related to status changes of this input are no longer sent.

• Type: Bool

15. "OUTPUTS:

• Description: object containing configuration parameters of physical and virtual outputs

• Type: JSON object

• Fields:
(a) "number_phy":

▪ Description: number of physical inputs. To be set to 4
▪ Type: integer

(b) "outputs"
▪ Description: array of description of physical outputs. Must contain number_phy elements
▪ Type: Array JSON
▪ Fields:

a. "num":

• Description: input number, must contain a sequence number for each array
element starting from number 1

• Type: integer
b. "polarity"

• Description: input polarity (0-> normal, 1-> inverse)

• Type: Bool
c. "pin"

• Description: pin input. (fixed: input1=47, input2 = 46, input1=45, input2 = 44)

• Type: integer

(c) "number_virt":

▪ Description: number of virtual outputs. To be set according to how many virtual outputs
you want to set.

▪ Type: integer

(d) "virtual_inputs":
▪ Description: virtual output description array. Must contain number_virt elements
▪ Type: Array JSON

▪ Fields:
a. "num":

• Description: output number, must contain a sequence number for each array
element starting from number 1

• Type: integer

b. "polarity":
• Description: input polarity (0-> normal, 1-> inverse)

• Type: Bool

 The Electronic Brand of Trace&Follow-Integration Manual-EN

13

c. "pin":
• Description: confidential, leave fixed at 0

• Type: integer

16. "CUTOFF:

• Description: object containing the configuration parameters of the CutOff functionality

• Type: JSON object

• Fields:

(a) "is_active":
▪ Description: enable CutOff
▪ Type: Bool

(b) "pin":
▪ Description: pin relay cutoff (fixed: input1=47, input2 = 46, input1=45, input2 = 44)
▪ Type: Integer

(c) "threshold:
▪ Description: threshold power
▪ Type: Integer [W]

(d) "idle_time":
▪ Description: time after which relay is triggered if idle
▪ Type: Integer [milliseconds]

17. "LOCALIZATION."

• Description: object containing the configuration parameters of the Localization feature

• Type: JSON object

• Fields:

(a) "is_active":
▪ Description: enabling localization
▪ Type: Bool

18. "MODBUS_TCP":
• Description: object containing the configuration parameters of the Localization feature

• Type: JSON object

• Fields:

(a) "is_active":
▪ Description: enable modbus TCP server

▪ Type: Bool
(b) "input_registers_number":

▪ Description: number input registers.
▪ Type: Integer

▪ Allowed values: the value should be left fixed at 50
(c) "holding_registers_number":

▪ Description: number holding registers

▪ Type: Integer
▪ Allowable values: the value should be left fixed at 60

(d) "coils_number":
▪ Description: number coils
▪ Type: Bool

▪ Allowed values: the value should be left fixed at 0
(e) "is_active":

▪ Description: enabling localization
▪ Type: Bool

(f) "port":
▪ Description: port on which the server is active
▪ Type: Integer

 The Electronic Brand of Trace&Follow-Integration Manual-EN

14

(g) "slave_id":
▪ Description: modbus id
▪ Type: Integer

(h) "send_input":
▪ Description: if = 1, input registers are also sent to the cloud platform

▪ Type: Bool
(i) "max_client_number":

▪ Description: maximum number of clients that can be simultaneously connected to the
server

▪ Type: Integer
(j) "idle_timeout":

▪ Description: time after which, if no requests are made from the client to the server, the

client is disconnected
▪ Type: Integer [millisecond]

Below is the default configuration file:

{

 "T&F config file": {

 "CREDENTIALS": {

 "}, "user",

 "password": "password"

 },

 "AP": {

 "name": "TraceAndFollow",

 "password": "password-TF",

 "ip": "192.168.1.1",

 "mask": "255.255.255.0",

 "gateway": "192.168.1.1"

 },

 "WIFI": {

 "use_dhcp": false,

 "ip": "192.168.1.100",

 "mask": "255.255.255.0",

 "gateway": "192.168.1.1",

 "dns": "192.168.1.1",

 "ssid": "ssid",

 "password": "password",

 "channel": 0,

 "bssid": "0"

 },

 "RTC": {

 "time_from_network": false,

 "timezone": 0,

 "timestamp_rel": true

 },

 "ETH": {

 "use_dhcp": false,

 "ip": "192.168.1.100",

 "mask": "255.255.255.0",

 "gateway": "192.168.1.1",

 "dns": "192.168.1.1"

 },

 "MAIN_MQTT": {

 "server": "broker.hivemq.com",

 "port": 1883,

 }, "attribute": "attributes",

 The Electronic Brand of Trace&Follow-Integration Manual-EN

15

 "telemetry": "telemetry",

 "}, "rpc",

 "username": "user",

 "password": "password",

 "connection_int": 2000

 },

"SECONDARY_MQTT": {

 "server": "broker.hivemq.com",

 "port": 1883,

 "attribute": "attributes",

 "telemetry": "telemetry",

 "rpc": "rpc",

 "username": "user2",

 "password": "password2",

 "connection_int": 2000

},

 "LORA": {

 "app_eui": "00000000000000000000000000000000",

 "app_key": "00000000000000000000000000000000",

 "downlink_time": 2000,

 "max_send_size": 65,

 "power": 5,

 "min_transmission_time": 30000

 },

 "HTTP": {},

 "SD": {},

 "CONNECTION": {

 "type": 1,

 "machine":3

 },

 "PACKET": {

 "packet_int": 30000,

 "buffer_size": 100

 },

 "POWER": {

 "sampling_int": 100,

 "voltage_sensor": 0,

 "line_freq": 50,

 "pga_gain": 42,

 "voltage_gain": 1,

 "gain_ct1": 38904,

 "gain_ct2": 38904,

 "gain_ct3": 38904,

 "pf": 0.95,

 "voltage": 230,

 "connection_type": 0

 },

 "INPUTS": {

 "number_phy": 4,

 "inputs": [

 {

 "num": 1,

 "enabled": false,

 "mod": 1,

 "polarity": 0,

 "filter_time": 1000,

 "reset_counter": false,

"add_to_packet": false

 The Electronic Brand of Trace&Follow-Integration Manual-EN

16

 },

 {

 "num": 2,

 "enabled": false,

 "mod": 1,

 "polarity": 0,

 "filter_time": 5000,

 "reset_counter": false,

"add_to_packet": false

 },

 {

 "num": 3,

 "enabled": false,

 "mod": 1,

 "polarity": 0,

 "filter_time": 1000,

 "reset_counter": false,

"add_to_packet": false

 },

 {

 "num": 4,

 "enabled": false,

 "mod": 1,

 "polarity": 0,

 "filter_time": 1000,

 "reset_counter": false,

"add_to_packet": false

 }

],

 "number_virt": 1,

 "virtual inputs": [

 {

 "num": 1,

 "enabled": false,

 "mod": 1,

 "polarity": 0,

 "filter_time": 1000,

 "reset_counter": false,

"add_to_packet": false

 }

]

 },

 "OUTPUTS": {

 "number_phy": 4,

 "outputs": [

 {

 "num": 1,

 "polarity": 0,

 "pin": 47

 },

 {

 "num": 2,

 "polarity": 0,

 "pin": 46

 },

 {

 "num": 3,

 "polarity": 0,

 The Electronic Brand of Trace&Follow-Integration Manual-EN

17

 "pin": 45

 },

 {

 "num": 4,

 "polarity": 0,

 "pin": 44

 }

],

 "number_virt": 1,

 "virtual outputs": [

 {

 "num": 1,

 "polarity": 0,

 "pin": 0

 }

]

 },

 "CUTOFF": {

 "is_active": false,

 "pin": 44,

 "threshold": 200,

 "idle_time": 100000

 },

 "LOCALIZATION": {

 "is_active": false

 },

 "MODBUS_TCP": {

 "is_active": false,

 "input_registers_number": 50,

 "holding_registers_number": 60,

 "coils_number": 0,

 "port": 502,

 "slave_id": 1,

 "send_input": false,

 "max_client_number": 2,

 "idle_timeout": 600000

 }

 }

}

1. Current Transformers calibration values and pga.

Model Report Voltage/Current gain_ctx pga_gain Voltage_gain
SCT024TS 200A/100mA C 31595 42 46604

SCT013 100A/1V T 44409 42 46604

 The Electronic Brand of Trace&Follow-Integration Manual-EN

18

OPERATIONAL STEPS.

Preliminary Checks

Upon turning on the board, verify that the LEDs depicted in the figure are illuminated as indicated. If they are not,
inspect the power supply to the board.

Initialization

Upon startup, the Trace&Follow board reads the saved configuration file and configures all devices accordingly. It then
initiates the Wi-Fi interface to generate its network and activates the selected network interface for connecting to the
cloud platform.

After these steps are completed, the board’s "run" LED will flash at a frequency of 1Hz.

Simultaneously, the board’s Status LED will glow white, indicating that it is attempting to connect to the cloud via the
selected interface.

During the initialization phase, check that the following LEDs are on:

Ethernet

Possible errors

• STATUS led in red color: Ethernet cable not properly plugged in or link missing.

Wi-Fi

Possible errors

• STATUS led in red color: The device is currently unable to connect to the selected network. After a brief
period, the LED will return to white, indicating that a new connection attempt is being made.

4G

Possible errors

• STATUS led in red color: The device is currently unable to connect to the cellular network. After a brief
period, the LED will return to white, indicating that a new connection attempt is being made.
In this case check:

• That the antenna is properly connected.

• That the SIM card is inserted of the appropriate slot.

• That the SIM has an active data plan.

Errors common to the three interfaces:

• RUN led steady on or off: Generic board error. Check the power supply and perform a board reset. If the

problem persists, contact technical support.

• STATUS led off: Generic board error. Check the power supply and perform a board reset. If the problem

persists contact technical support.

Led RUN: flashing at a frequency of 1HZ

Led STATUS: fixed color WHITE

 The Electronic Brand of Trace&Follow-Integration Manual-EN

19

After establishing the connection, the LED turns blue to indicate that the board is connected to the internet.
The board will then attempt to retrieve the current timestamp from the network if needed (refer to chapter “Periodic
Data Payload”). If an error occurs, the STATUS LED will flash blue and red alternately. If the timestamp cannot be
obtained after three failed attempts, the board will automatically restart the network interface.

The board attempts to connect to the configured MQTT broker.
If there is an error, the STATUS LED flashes red. The reconnection interval can be set in the configuration file. After
successfully connecting to the MQTT broker, the STATUS LED turns green, and the board begins sending data.

Note: Obtaining the timestamp and connecting to the broker can be done quickly, causing the STATUS LED to change
from white to green.

MQTT INTERFACE

The board can send and receive data to and from a platform using an MQTT connection. The payloads exchanged are
in JSON format.

The data collected by the board are divided into two separate categories:
• Non-periodic configuration data, posted in the topic "attribute"

• Periodic and non-periodic state data, posted in the topic "telemetry"

The data sent to the board should be posted in the "rpc" topic, following a format explained below.

All three of these topics are configurable through the configuration file.

The board supports connection to two MQTT brokers simultaneously, each of which can be configured separately
from the configuration file. The first one (MAIN_MQTT) is enabled by default and cannot be disabled, the second one
(SECONDARY_MQTT) must be enabled via configuration file. Both connections are parallel and independent. OTA
updates are only possible through the primary broker.

Periodic data are captured and saved at regular intervals in data structures called “packets”. The board as soon as it
has a packet ready attempt to send it to the MQTT broker. In case of sending failure, this packet is saved inside an

internal buffe. When communication is restored, it sends all the packets in the buffer. If the resulting payload size is
too large, the sending is split into multiple messages until the buffer is empty.
Non-periodic data are sent to the broker as soon as a change in their status is detected.

Data sent from the board

Non-periodic data:

• input(N)_type: field indicating the mode in which a physical input is configured.

o Type: Integer
o Allowed values: [1-4]

• virtual_input(N)_type: field indicating the mode in which a virtual input is configured.

o Type: Integer
o Allowed values: [1-4]

• packet_time: field indicating how often a packet containing periodic data is created in seconds.
o Type: Integer
o Allowed values: [1 ...] seconds

• energy_standby_threshold: field indicating the instantaneous power threshold below which the board

considers the machine to be in idle state.
o Type: Integer
o Allowable values: [0 ...] [W]

 The Electronic Brand of Trace&Follow-Integration Manual-EN

20

• inactivity_time: field indicating after how long the CutOff relay is triggered when the machine is in idle state

in seconds. This function must be enabled from the configuration file.

o Type: Integer
o Allowed values: [15 ...] [s], if = 0, disabled

• transmission_time: fixed value of 0.
o Type: Integer
o Allowed values: 0

• hardware_version: field indicating the hardware version of the board.

o Type: String

• firmware_version: field indicating the firmware version of the board.

o Type: String

• connection_type: field indicating the network interface through which the board is connected to the broker.

o Type: Integer
o Allowable values: [1-4]

• timezone: field indicating the timezone in which the board is located. The board does not take it

automatically but is set by configuration file.
o Type: Integer
o Allowable values [-12 - +12]

• timestamp_rel: field indicating whether the board is using a relative or absolute timestamp for posting
messages.

o Type: Bool

• ip: field indicating the IP of the board in the network.
o Type: String

• gateway: field indicating the gateway configured in the network.

o Type: String

• mask: field indicating the configured network mask.
o Type: String

• dns: field indicating the configured dns.

o Type: String

• mac: field indicating the mac address of the network board.

o Type: String

Non-periodic state data:

• input(N)_value: field indicating the current state of the input or its associated function when input(N)_type =
1 (normal), 3 (function), 4 (blinking)

o physical input state.
o Type: Bool
o Allowable values: [0-1]

• virtual_input(N)_value: field indicating the current state of the input or its associated function when

virtual_input(N)_type = 1 (normal), 3 (function), 4 (blinking)
o virtual input state.

 The Electronic Brand of Trace&Follow-Integration Manual-EN

21

o Type: Bool
o Allowable values: [0-1]

• output(N): physical output state.

o Type: Bool
o Allowable values: [0-1]

• virtual_output(N): virtual output state
o Type: Bool

o Allowable values: [0-1]

Periodic data:

• energy_consuption: active energy consumed over the time span of a packet.
o Type: Float [Wh]

• input(N)_value: field indicating the number of pulses received by the related input when input(N)_type = 2

(counter)
o Number of pulses in the time span of a packet.

o Type: Integer
o Allowed values: [0 ...]

• Virtual_input(N)_value: field indicating the number of pulses received by the related input when
virtual_input(N)_type = 2 (counter)

o Number of pulses in the time span of a packet.

o Type: Integer
o Allowed values: [0 ...]

• voltage1: Phase 1 voltage.
o Type: Float [V]

• voltage2: Phase 2 voltage.

o Type: Float [V]

• voltage3: Phase 3 voltage.
o Type: Float [V]

• current1: Phase 1 current.
o Type: Float [A]

• current2: Phase 2 current.
o Type: Float [A]

• current3: Phase 3 current.
o Type: Float [A]

• current_tot: total current across all phases.

o Type: Float [A]
• active_power1: phase 1 active power.

o Type: Float [W]

• active_power2: phase 2 active power.

o Type: Float [W]

• active_power3: phase 3 active power.

o Type: Float [W]
• active_power_tot: total instantaneous active power across all phases.

o Type: Float [W]

• reactive_power1: phase 1 reactive power.

o Type: Float [VAR]

• reactive_power2: phase 2 reactive power.

o Type: Float [VAR]

 The Electronic Brand of Trace&Follow-Integration Manual-EN

22

• reactive_power3: phase 3 reactive power.

o Type: Float [VAR]
• reactive_power_tot: total instantaneous reactive power across all phases.

o Type: Float [VAR]

• pf1: Phase 1 instantaneous power factor.

o Type: Float

• pf2: Phase 2 instantaneous power factor.

o Type: Float
• pf3: Phase 3 instantaneous power factor.

o Type: Float
• pf_tot: Total instantaneous power factor across all phases.

o Type: Float

• phase1: Phase 1 phase shift.

o Type: Float [°]

• phase2: Phase 2 phase shift.
o Type: Float [°]

• phase3: Phase 3 phase shift.

o Type: Float [°]

• Frequency: Grid frequency.

o Type: Float [Hz]

• reactive_energy_consuption: Reactive energy consumed over the time span of a packet.
o Type: Float [VARh]

Note: When an input is set to mode 1, 3, or 4, it will be sent as soon as a change in state is detected, following the
logic of nonperiodic data (if key “add_to_packet" = “false”).

Note: Qualitative energy data is only invoked if the power phases are connected to the board and in the configuration
file the key "voltage_sensor" has value "true".

Payload on first connection

Once the board starts and establishes a connection to the broker, it immediately publishes a message on the topic
“attribute” with the following fields:

• packet_time

• transmission_time

• energy_standby_threshold

• inactivity_time

• hardware_version

• firmware_version

• connection_type

• timezone

• timestamp_rel

• input1_type
• input2_type

• input3_type

• input4_type

• virtual_input(N)_type (one key for each configured virtual input)

 The Electronic Brand of Trace&Follow-Integration Manual-EN

23

Example of initial payload, with topic attribute→ v1/devices/me/attributes :

Network data payload

Whenever the board connects to the MQTT broker, whether it”s the first connection or after a disconnection, it sends
a payload with the following fields to the topic “attribute”:

• ip

• gateway

• mask

• dns

• mac

Periodic data payload

Once a packet is prepared and the connection with the broker is established, the board publishes a payload on the
“telemetry” topic. This payload contains all periodic data for the packet in the form of a JSON array, with each packet
represented by a JSON object.

Each object contains two keys:

• "ts": timestamp associated with the creation of the package in UNIX format in milliseconds

o Type: String

• "values": object containing all the keys of the package

o Type: JSON object

The Trace&Follow board has a battery-backed RTC that allows it to maintain the current time even in the event of a
power failure.

 The Electronic Brand of Trace&Follow-Integration Manual-EN

24

Depending on the configuration file settings, the board can use the timestamp in the RTC, obtain the current
timestamp from the network, or use one related to the startup of the board:

• "timestamp_rel" = true: the board will publish messages using the timestamp related to startup.

• "timestamp_rel" = false and "time_from_network" = true: the board will get the timestamp from the network

and will automatically update the one in the RTC and use it for messages.

• "timestamp_rel" = false and "time_from_network" = false: the board the board will use the timestamp saved
in the RTC and use it for messages.

Note: f RTC data is lost, such as due to battery removal or discharge, the board will use a relative timestamp. The

initial instant will be the startup of the board.

Example of message containing a single package, with topic telemetry→ v1/devices/me/telemetry:

Example of a message with multiple packets:

 The Electronic Brand of Trace&Follow-Integration Manual-EN

25

Payload non-periodic state data

If the input is configured in mode 1, 3, or 4, the status change is sent to the “telemetry” topic without the associated
timestamp, always within a JSON array.

Example of input configured in mode 1, with topic telemetry→ v1/devices/me/telemetry:

Non-periodic configuration data payload

In case of non-periodic data changed during the operation of the board, it will be sent on the topic "attribute" within
a JSON object.

Example with topic attribute→ v1/devices/me/attributes:

Data sent from the server

The server responsible for handling the data sent by the board must also send data.
Server-side data submission can occur in two ways:

• Server first: in this case the server will send some configuration parameters that the board is ready to
receive.

• Board first: in this case the board perform a request to the server, which must respond with the requested
data.

Server first

The server determines when to send data to the board using the “rpc” topic with the suffix “/request/$request_id”.
Example with topic rpc→ v1/devices/me/rpc/

v1/devices/me/rpc/request/$request_id

Where $request_id is an integer that identifies the single request made. This id must increment with each request.
When the board makes a new connection the request_id must restart at 0.

 The Electronic Brand of Trace&Follow-Integration Manual-EN

26

The payload sent by the server must consist of a JSON object containing:
• The "method" key:

o Type: String

o Description: the method to be performed by the board
• The key "params":

o Type: JSON object
o Description: contains keys with parameters for rpc execution.

Example of an Rpc request made by the server:

method params Description

setInputFunctionState
number: input number
state: new state of the function associated with the input

Sets the state of the function
associated with the selected
input when configured in input
mode

setConfigOutput
number: output number
polarity: polarity of the output [0 normal 1 inverted].

Sets the polarity of the selected
output

setOutput

number: output number
state: new output state
time: time the output remains active (0 = infinity) [50 ... infinity]
milliseconds

Sets the status of the selected
output. The “time” parameter
can be used to send a pulse of
a specific duration

setThreshold value: new threshold value for standby [> 0] W
Sets the instantaneous power
threshold used in the CutOff
function

setInactivityTime value: new idle time (0 = disabled) [30 ... infinity] seconds
Set the maximum idle time in
the CutOff function

setPacketTime value: new packet time [1 ...] s
Sets the time between the
creation of one package and
the next one

reset value: 1 Performs a board reset

setInputRegister
number: register number [0-9]
value: value to be entered into the register [0-65535]

Sets the value of an input
register associated with the
modbus TCP server managed
by the board

setCurrentTimestamp Value: GMT timestamp in UTC format, in seconds
Updates the timestamp value
saved within the board RTC

 The Electronic Brand of Trace&Follow-Integration Manual-EN

27

Once the board successfully receives the RPC request, it publishes the same payload received from the server on the
“rpc” topic with the suffix /response/$request_id.

Example with topic rpc→ v1/devices/me/rpc/

"rpc"/response/$request_id

Where the $request_id parameter has the same value as the one received.

Sample response sent from the board:

When a parameter is modified, the board will post a message in the “attribute” topic that includes the updated value.

Note: In case you go to change the packet time (via RPC), the board will interrupt the current packet, send it to the
server, and start a new one with the new time set.

Board first

In this mode, the board requests keys from the server, which must respond with a message in JSON format containing

the values of the requested keys.
The request is published on the “attribute” topic with the suffix “/request/$request_id”.

Example with topic attribute→ v1/devices/me/attributes/

v1/devices/me/attributes/request/$request_id

Where the $request_id parameter is an incremental integer that identifies the request.

The request message from the board consists of a JSON object containing the following key:

• "sharedKeys:
o Type: String
o Description: contains the keys of the required parameters separated by a comma

Sample application:

 The Electronic Brand of Trace&Follow-Integration Manual-EN

28

Server response must be posted on the topic "attribute" with the suffix “/response /$request_id” is applied

Example with topic attribute→ v1/devices/me/attributes/

v1/devices/me/attributes/response/$request_id

Where the $request_id parameter must have the same value as the one in the request.

The response message from the server consists of a JSON object containing the following key:

• "shared."
o Type: JSON object
o Description: contains the key-value pairs related to the keys required by the board.

The requested keys, excluding those related to firmware, are sent by the board with the prefix “s_”. This ensures that
if a parameter is changed while the board is off and the RPC request fails, the board can still receive the correct and
updated values.

The possible keys required by the board are as follows:

• s_energy_standby_threshold:
o Type: Integer
o Description: instantaneous power threshold below which the board considers the machine in idle

state in W. Refers to the parameter with the key sent by the board "energy_standby_threshold".

• s_inactivity_time:

o Type: Integer

o Description: indicates after how long the CutOff relay is triggered when the machine is in idle state
in seconds. It refers to the parameter with the key sent from the "inactivity_time" tab.

• s_packet_time:
o Type: Integer
o Description: field indicating how often the creation of a packet containing periodic data occurs in

seconds. Refers to the parameter with the key sent from the "packet_time" tab.
• fw_title:

o Type: String
o Description: title Firmware OTA

• fw_version:
o Type: String
o Description: Firmware OTA version

• fw_size:

o Type: Integer

o Description: binary OTA file size [bytes]

• fw_checksum:

o Type: String
o Description: OTA firmware checksum calculated with MD5 algorithm

 The Electronic Brand of Trace&Follow-Integration Manual-EN

29

Sample server response:

OTA Updates

Through the MQTT interface, the firmware of the Trace&Follow board can be updated.

The update begins with the server posting the following keys in the "attribute" topic:
• fw_title:

o Type: String
o Description: title Firmware
o Allowed values: "TraceAndFollow", if the submitted name is different from the one given here, the

package is not installed.

• fw_version:

o Type: String
o Description: Firmware version. The version must be greater than the previous version for the

package to be installed.

• fw_size:
o Type: Integer
o Description: binary file size [bytes]

• fw_checksum:
o Type: String
o Description: firmware checksum calculated with MD5 algorithm

• fw_tag:

o Type: String
o Description: its value consists of fw_title and fw_version separated by a space.

• fw_checksum_algorithm:

o Type: String
o Description: algorithm used to calculate the checksum.
o Allowed Values: "MD5" this field must have fixed value as reported

 The Electronic Brand of Trace&Follow-Integration Manual-EN

30

Example of a message published by the server:

When the board receives valid parameters, it enters in Download mode and stops normal program execution. In this
mode, it does not accept RPC calls or send data as it does during ordinary operation.
Once the board enters this mode, it posts a message on the topic “attribute” containing the following keys:

• fw_chunk_size: indicates the size of the chunks with which the server should respond to requests from the
board

• fw_chunk_number: indicates the number of chunks that the board will request

• fw_current_chunk: indicates the chunk that is currently downloading. In this first message, its value will be 0

Example of first message:

Then the board posts another message on the same topic containing the status of the update:

 The Electronic Brand of Trace&Follow-Integration Manual-EN

31

At this point the download of the binary file begins. The board public on the topic

v2/fw/request/0/chunk/$chunk_number

a message containing the size of the requested chunk. The value of $chunk_number is an incremental integer that

corresponds to successive sections of the firmware.
The server will have to respond on the topic

v2/fw/response/0/chunk/$chunk_number

with a number of bytes of the binary file equal to the chunk_size. The value of the $chunk_number parameter should
be the same as the value of the request made by the board.

Example of server response with $chunk_size = 100 and $chunk_number = 0

When chunk 0 has been downloaded, the board publishes a request for the next chunk and so on until the end of the
chunks. At each chunk, the board publishes the value of "fw_current_chunk"

Example of message published after receiving chunk 1:

After the download is finished, the board notifies the success of the update by setting the value of "fw_state" to
"DOWNLOADED"

At this point the board reboots and installs the update.

 The Electronic Brand of Trace&Follow-Integration Manual-EN

32

In case of an error during a step of the update, the parameter "fw_state" is set to "FAILED" and the parameter
"fw_error" set with an agreement.

Example of an error where the firmware version is not greater than the one already present:

When the firmware update starts, the STATUS LED on the board turns BLUE.
In case of an error, the LED flashes red for 500ms, returns blue for another 500ms, after which it remains off for 3
seconds and the cycle is repeated twice.

STATUS STATUS STATUS STATUS

500ms 500ms

3s

 The Electronic Brand of Trace&Follow-Integration Manual-EN

33

I/O MANAGEMENT.

The Trace&Follow board has four physical inputs and four physical outputs. Additionally, it is configured to handle

virtual inputs and outputs, which are used to standardize the handling of values sent from the board. Once the I/O is

configured on the board, a standard set of keys on the MQTT interface can be used, regardless of the type of value

being monitored.

Example: A pressure sensor is connected via the RS485 expansion port, returning values in bar.

The value is transmitted via MQTT using the virtual_input1_value key. In a similar application, the pressure sensor is

substituted with an encoder. The board consistently sends the acquired value as virtual_input1_value, ensuring that

the keys sent by the board remain the same, while the meaning of the value can be configured on the server-side.

Input configuration

The board inputs can be configured in 4 modes:
1. Normal: The input is considered normal digital input. A filter time can be set (key “filter_time” in the

configuration file). State changes that occur within the set filter time will not be transmitted to the server. If
the filter time is exceeded, the message will be transmitted via MQTT.

2. Counter: In this mode, the board counts incoming pulses on the pin and treats data for inputs configured in

this mode as periodic data. The data is then inserted into packets with associated timestamps.

3. Function: In this mode, the Boolean variable inside the board changes value when the signal changes state.

The variable starts at 0 during startup and changes to 1 when the signal changes state (edge). The variable
can be reset to 0 if the signal is held high for at least 3 seconds. An example of an application could be a
maintenance request button: the operator presses the button to bring the variable to 1, and to reset the

state, they must press the same button for 3 seconds.

4. Blinking: This function detects a blinking input signal. For instance, it can detect a signal from a signal column
of an industrial machinery. A flashing light corresponds to an active machine (value = 1), while a light off

corresponds to a stopped machine (value = 0).

For each input, it is then also possible to configure the polarity of the input (logical inversion):

• "polarity" = 0: Normal polarity.

• "polarity" = 1: Reverse polarity.

Example: "polarity" = 0, in case of 0V applied on the input, the board sends 0 as status, in case of 24V applied, the
board sends 1. If "polarity" = 1 on the other hand in case of 0V applied on the input, the board sends 1 as status, in
case of 24V applied, the board sends 0.

When the input is configured in "Counter" mode, setting the "reset_counter" configuration key to "true" means that
the counter value will be reset with every packet. On the other hand, if it is set to "false", the counter will not be reset

up to a maximum value of 4,294,967,295 (32-bit unsigned integer).
When the input is configured in the other 3 modes, the "add_to_packet" key can be used to include or not include it
as periodic data instead of sending it as asynchronous data. Specifically, if "add_to_packet" = "true", it is sent as

periodic data, otherwise as asynchronous data.

 The Electronic Brand of Trace&Follow-Integration Manual-EN

34

Output configuration

Polarity can be configured for the outputs:

• "polarity" = 0: Normal polarity.

• "polarity" = 1: Reverse polarity.

Example: "polarity" = 0, in case of command to set the output to the value of 1, the output will be set to the value of
VCC, in case of command to set the output to the value of 0, the output will be set to the value of GND.

"polarity" = 1, in case of command to set the output to the value of 1, the output will be set to the value of GND, in
case of command to set the output to the value of 0, the output will be set to the value of VCC.

MODBUS TCP SERVER

The board is equipped with a Modbus TCP server for transmitting and receiving data via the Modbus TCP protocol.
Of the server it is possible to configure:

• Port on which the server is exposed.

• Slave id.

• The maximum number of simultaneously connected clients .

• The idle time before a client is disconnected (idle time is defined as the time for which the client does not

send requests to the server).
• The activation or deactivation of the server.

These parameters are contained in the configuration file.

The Modbus TCP server can be used by an external PLC to enter production data related to current productions if the
Trace&Follow board is used to monitor a production machine.
In this scenario, the PLC functions as a client and is responsible for establishing the connection to the server on the
board.

The server and the board have the same IP address on the network. To access the board via its IP address, it must be
connected via Ethernet or Wi-Fi.

If the board is not connected to a network or is only connected to 4G, you can still access the Modbus server by
connecting to the access point generated by the board. The server will only be exposed on the same IP that is set by
the configuration file on which the web page is exposed.

The commands to which the board responds are:

• Read Holding Registers (03)

• Read Input Registers (04)

• Write Multiple Registers (16)

The write command writes to the Holding Registers.

 The Electronic Brand of Trace&Follow-Integration Manual-EN

35

Input registers

Through the server, many parameters of the board, saved in the input registers according to the following table, can
be accessed:

Add meaning 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 notes

0 Fixed value at 1 1

1 Hardware

Version

major version release

2 Firmware

Version

major v minor v release

3 packet time value in seconds

4 transmission

time

value in seconds

5 inactivity time value in seconds

6 energy stand-by

threshold

watts value

7 connection type 1-> Ethernet, 2-> Wi-Fi, 3-> LoRa, 4 -> 4G

8 input type type in 4 type in 3 type in 2 type in 1 0-> disabled,

1-> normal,

2-> counter,

3-> function

9 AP enabled 1-> enabled, 0-> disabled

10 AP name 1 character 29 character 28 Character 29

leftmost,

character 0

rightmost.

Unused

characters set

to 0

11 AP name 2 character 27 character 26

12 AP name 3 character 25 character 24

13 AP name 4 character 23 character 22

14 AP name 5 character 21 character 20

15 AP name 6 character 19 character 18

16 AP name 7 character 17 character 16

17 AP name 8 character 15 character 14

18 AP name 9 character 13 character 12

19 AP name 10 character 11 character 10

20 AP name 11 character 9 character 8

21 AP name 12 character 7 character 6

22 AP name 13 character 5 character 4

23 AP name 14 character 3 character 2

24 AP name 15 character 1 character 0

25 IP AP 1 byte 1 IP byte 2 IP byte4.byte3.

byte2.byte1 26 IP AP 2 byte 3 IP byte 4 IP

27 cut-off enabled 1-> enabled, 0-> disabled

28 localization

enable status

1-> enabled, 0-> disabled

29 reserved

30 network

connection

status

1->connected, 0->not connected

 The Electronic Brand of Trace&Follow-Integration Manual-EN

36

31 MQTT

connection

status

1->connected, 0->not connected

32 IP tab 1 byte 1 IP byte 2 IP byte4.byte3.

byte2.byte1 33 IP tab 2 byte 3 IP byte 4 IP

34 Modbus client

maximums

35 Modbus clients

connected

36 Modbus idle

timeout

value in seconds

37 IO logical status reserved o4 o3 o2 o1 in4 in3 in2 in1 possible values

for each field

0/1
38 instantaneous

power

watts value

39 reserved

40 RPC 0 Set by RPC call Sent to cloud

with add 3000

41 RPC 1 Set by RPC call Sent to cloud

with add 3001

42 RPC 2 Set by RPC call Sent to cloud

with add 3002

43 RPC 3 Set by RPC call Sent to cloud

with add 3003

44 RPC 4 Set by RPC call Sent to cloud

with add 3004

45 RPC 5 Set by RPC call Sent to cloud

with add 3005

46 RPC 6 Set by RPC call Sent to cloud

with add 3006

47 RPC 7 Set by RPC call Sent to cloud

with add 3007

48 RPC 8 Set by RPC call Sent to cloud

with add 3008

49 RPC 9 Set by RPC call Sent to cloud

with add 3009

The RPC registers 0-9 can have their values set via the MQTT interface using the “setInputRegister” method provided
in the RPC method table. This allows for server-sent values to be read by the PLC connected to the Trace&Follow

board. Additionally, the configuration file includes a “send_input” key in the “MODBUS_TCP” field. When the key is set
to "true", when the value is written via RPC, the board sends the value just set on the "telemetry" topic with the key
"virtual_input300x_value".

Example of incoming request from server with board response when "send_input" = "true":

 The Electronic Brand of Trace&Follow-Integration Manual-EN

37

Holding registers

Unlike Input Registers, Holding Registers can be written by the PLC. They are used to monitor the output of the
machine to which the board is connected.
The logs are divided into 5 blocks, allowing up to 5 simultaneous productions to be monitored.
For each production, you can set:

• The production code (Max 10 characters): registers x0 - x4, 2 ASCII characters for each register.

• The OK piece counter: register x5

• The NOK piece counter: register x6

• The cycle time of production: log x7

• The production target: register x8

Finally, there is a register through which the PLC can send the status of the machine to the server.

This is data that the PLC writes, and the board sends to the server via the MQTT interface.

The board publishes this data as soon as it is written using the "virtual_input(N)_value" keys according to the

following table:

Address Meaning Virtual Input Value Production

1 machine status 4001 /

10

product code 1 4014

PRODUCTION 1

11

12

13

14

15 piece counter OK 1 4015

16 scrap piece counter 1 4016

17 cycle time 1 4017

18 target production 1 4018

20
product code 2 4024 PRODUCTION 2

21

 The Electronic Brand of Trace&Follow-Integration Manual-EN

38

22

23

24

25 piece counter OK 2 4025

26 scrap piece counter 2 4026

27 cycle time 2 4027

28 target production 2 4028

30

product code 3 4034

PRODUCTION 3

31

32

33

34

35 piece counter OK 3 4035

36 scrap piece counter 3 4036

37 cycle time 3 4037

38 target production 3 4038

40

product code 4 4044

PRODUCTION 4

41

42

43

44

45 piece counter OK 4 4045

46 scrap piece counter 4 4046

47 cycle time 4 4047

48 target production 4 4048

50

product code 5 4054

PRODUCTION 5

51

52

53

54

55 piece counter OK 5 4055

56 scrap piece counter 5 4056

57 cycle time 5 4057

58 target production 5 4058

At the start of a new production, the PLC must set registers x0 - x4 with the corresponding production code. The board
will then send the code as a single string using the key “virtual_input_40x4_value” Additionally, cycle time and target
can be set and sent in a similar manner.

 The Electronic Brand of Trace&Follow-Integration Manual-EN

39

During the production phase, the PLC can set the registers associated with the counters according to the production
statistics. When a register is set to a non-zero value, the board sends that value to the server and resets the register to
0 to indicate successful transmission.
After production is complete, the PLC should reset the production code, cycle time, and target registers to 0. The
board sends the reset parameters and a null string as the code to indicate the end of production.

Example production start with only target and code set:

Example writing counters:

It is also possible to set only one counters. The board sends only those that have been changed:

Example end of production:

 The Electronic Brand of Trace&Follow-Integration Manual-EN

40

LoRaWAN INTERFACE

With the LoRaWAN extension, the Trace&Follow board can be configured to work over the LoRaWAN protocol. This
protocol allows sending and receiving data over long distances via a LoRa gateway in environments where there is no
connectivity (the gateway must still be connected to the network).
The configuration file can be used to set the connection parameters to the gateway.

The connection is established using the class A Over-The-Air-Activation (OTAA) procedure.
The communication parameters are:

• LoRaWAN MAC version: 1.0.2

• LoRaWAN Regional Parameters revision: B

• ADR algorithm: Default ADR algorithm (LoRa only)

• Max EIRP: 27

• Uplink Interval: 1

LoRa infrastructure scheme:

Trace&Follow cards send over LoRa packets encoded in a byte array, which you can decode using the function

attached to this document.
You can also send data to the card via this protocol using the encoding function attached to this document or
downloadable from https://idtsolution.com/trace-and-follow/.
Both functions must be implemented on the LoRa network server. The decoding function returns a JSON, while the
encoding function expects a JSON as input. Both are formatted as described in the MQTT connection section.

Note: Parameters related to qualitative energy measurement are not available through this protocol, nor is the
interface to the Modbus TCP server. OTA updates are also not available.

 The Electronic Brand of Trace&Follow-Integration Manual-EN

41

REVIEWS

REVIEWS

N. Description Date

0 First Release 04/04/2024

1 Introduction qualitative energy data, LoRaWAN connection 11/06/2024

2 Update measurement unit for sent data 18/06/2024

This document constitutes technical documentation; for further details and information, please refer to the full

Trace&Follow™ manual.

